Prefetching Links on the WWW

Zhimei Jiang

Leonard Kleinrock *

Department of Computer Science
University of California at Los Angeles

Los Angeles, CA 90024

Abstract

In this paper, we sludy prefetch techniques in the WWW,
tn which we predict which files will be needed in the near fu-
ture and download some of them before they are requested by
the user. Our prefetch scheme includes two algorithms: the
prediction algorithm and the threshold algorithm. The pre-
diction algorithm estimates the probability with which each
file will be requested in the near future. The threshold algo-
rithm computes the prefetch threshold for each server. An
tmportant contribution of this paper is a formula we derived
to determine the prefetch threshold dynamically based on the
system load, capacity and the cost of time and system re-
sources to the user. Simulations driven by trace files show
that using access information from the client can achieve high
successful prediction rates, while using that from the server
can result in more hils in general. We have also developed
a prefetch program at the client site which assists users in
browsing faster and more efficiently.

1 Introduction

Due to the proliferation of the World Wide Web
(WWW), there has been a large increase in information
transmitted over the Internet. This includes not only text
and images but video and audio as well. The growth of inter-
net capacity is not keeping pace and often users experience
long delays 1n retrieving files from Web servers. Sometimes,
the waiting does not end even after the file has made it to
the local disk. For example, after an access, the client ma-
chine may need to decompress files, compile Java programs,
etc. However while the user is viewing a page, the local ma-
chine is generally idle. These idle periods can be used to
reduce the user’s future waiting times. One way of doing
this is to prefetch the files, namely to fetch the files that are
likely to be accessed before the user requests for them. More
specifically, some intelligence is added to web browsers and
servers such that whenever a new page is displayed they can
estimate which files (i.e. links) will be needed in the next
few accesses and then choose some of them to transmit to
the local disk beforehand according to certain criteria. If
a prefetched file is indeed requested, the user can access it
with negligible delay. In addition, prefetching allows more
time for sophisticated processing including encryption, com-

*This work was supported by the Advanced Research Projects
Agency, ARPA/CSTO, under Contract DABT-63-94-C-0080 " Trans-
parent Virtual Mobile Environment”.

0-7803-3925-8/97 $10.00 ©1997 IEEE 483

pression and compilation to be carried out at both the server
and the client sites, so that data can be transmitted more
efficiently and securely.

If we knew exactly what a user would need next, we
would retrieve only those files in advance. Assuming that the
prefetch operation always finishes before the user goes to the
next page, then we could enjoy zero latency with no extra
bandwidth requirement. Unfortunately, in the real world,
some prefetched files may never be used, resulting in wasted
bandwidth and increased delay to normal (nonprefetching)
requests. More seriously, prefetching too many files could
be disastrous to the network. Therefore, the problem to be
solved is how to choose the files to prefetch such that the
gain from the decreased latency by viewing prefetched files
minus the loss suffered from prefetching those files which are
never used, is maximized. We propose one solution in this
paper.

Basically, our prefetch scheme includes two algorithms:
the prediction algorithm, and the threshold algorithm. The
prediction algorithm collects access history information and
estimates the probability of each file being accessed in the
near future by the user. The threshold algorithm computes
a prefetch threshold for each server. A file is prefetched if
and only if its access probability exceeds its server’s prefetch
threshold. By prefetching a file, we mean that the file is
downloaded if no up-to-date version of the file is available
on the local disk; otherwise no action will be taken. Details
of these two algorithms are covered in the next two sections.
We also studied the efficiency of our prediction algorithm
through trace-driven simulations. The results are summa-
rized in section 4. In addition, we developed a prefetch pro-
gram running on top of the Netscape browser. The program,
which is presented in section 5, also includes some interest-
ing functions which can help the user browse more efficiently.
We conclude in section 6.

2 The prediction algorithm

The task of the prediction algorithm is to keep track of
the user/server access history and compute the access prob-
abilities in order to determine which files to prefetch. The
access probability p(B|A) is defined as the conditional proba-
bility that file B will be requested by the user given that file
A 1s being viewed. Our prediction algorithm is based on the
fact that typically web surfing involves a sequence of clicking
and downloading operations. Namely, first the user clicks on

a link to download a new page. After viewing the new page,
the user usually clicks on a link on this page to download
another new page and so on. Sometimes, the user may click
the ‘back’ button on the browser to go back to some previ-
ous page and then go to another link on that page. Rarely
does the user type in a URL to switch to a new page. We
take advantage of this feature by only keeping track of the
click operations and assume p(B|A) is 0 if no link exists on
page A to page B. In our prefetch scheme, the prediction
algorithm is required on the client site. The same algorithm
can also be implemented on the server site to help the client
generating the access probabilities.

Both [1] and [6] studied the prediction algorithm at the
server site. Parameters similar to the access probability are
defined in these references. In both algorithms, a window is
applied to the access history, either in terms of time or in
terms of the number of requests. Files within the same win-
dow are all considered to be dependent. Since the content of
each page varies greatly and how pages are browsed differs
from user to user, it is hard to adjust the size of the time win-
dow. In the WWW after an html file is downloaded, several
images embedded in this file are downloaded immediately.
The request window includes both html files and embedded
images, this makes it hard to determine the window size as
well. Qur scheme is similar to using a request window of size
two after removing all the requests that are not sent explic-
itly by the user, for example embedded images, etc.,
the request sequence.

from

Our prediction algorithm requires each client to keep
track of its own access history by maintaining two kinds of
counters, the file counters and the link counters. Each file
A is associated with a file counter C4. In addition, if file B
can be accessed directly from file A, namely there exists a
link on file A pointing to file B, then there is a link counter
C(a,B) for the pair. There are no other counters. Initially,
all counters are set to 0. Whenever file A 1s downloaded, Cy4
is increased by one. In addition, if file B is accessed by click-
ing on the corresponding link on the previous file A, counter
Ca,B) is also increased by one. These counters are used to
predict the user behavior in the following way. Whenever file
A is being viewed, the access probability of file B is given
by min(1, —iﬁlﬁl) for C4 > 5, and 0 for C4 < 5. When file
A is not bemg viewed, P{BIA} is always set to 0. Notice
that for a page A with k distinct links, Ei:l P{B;|A} can
be greater than one. This is because a user may click link
i, on page A and come ‘back’ later to go to another link s
through this page. Therefore while page A is retrieved from
the server only once, more than one file might be accessed
from page A. The values of these counters are based on the

access history during a certain period of time, for example
the last 30 days.

The access probabilities at the client site show the user’s
personal interest. The same prediction algorithm can also
run on the server to keep track of the popularity of the files
over all the users that have accessed that server. If a client
hasn’t visited a page often enough to obtain reliable access

484

probabilities, the server’s access probabilities are more likely
to be accurate. Access probabilities from the server and
client are merged in the following way at the client site.
If a page has been visited less than 5 times by the client,
and its access probability is available at the server then the
server’s probability is used. Otherwise, access probability
from the client is used. More sophisticated algorithms may
be developed to do the merging. We have implemented this
algorithm in the program presented in section 5

3 The threshold algorithm

Prefetching 1s a scheme which takes advantage of the
tradeoff between bandwidth usage and latency by predicting
which files will be needed and downloading some of them so
that these files can be viewed immediatedly when the user
requests them later. We choose to measure this tradeoff
in terms of cost which is comprised of both the delay cost
(ar$/time unit) and the system resource cost (ap$/packet),
where the system resource cost includes the cost of process-
ing the packets at the end nodes and that of transmitting
them from the source to the destination. In this section, we
study how to determine which files to prefetch in order to
minimize the average cost of browsing a page.

Previous work on prefetching uses a fixed threshold for
all servers. The problem with a fixed threshold is that it does
not consider factors like system load and capacity, which can
greatly affect the performance of prefetching. For example,
we should be more cautious in prefetching files when the
system load is high. In the rest of this section, we study a
prefetch system model and derive an upper bound for the
prefetch threshold based on system capacity, load, and cost.
Unless indicated otherwise, we assume that a prefetch op-
eration always finishes before the user sends out the next
request. In addition, we assume that when a prefetched file
is requested for the first time, it is always up to date. We
also assume infinite storage space at the client, so prefetched
files are never deleted. These assumptions imply that the
first request to a prefetched file will always result in a hit *.
In the real implementation, we may encounter the problem
of running out of the disk space, in which case some cached
files must be deleted. We will not discuss this problem any
further in this paper.

a) The system model.

The system we are going to study consists of a single
WWW server and multiple users which share the WWW
server and the network link to it as shown in figure 1a. Each
user’s system can prefetch files while the user is browsing. We
model this prefetching system as an M/G/1 Round-Robin

*A file can be viewed more than once. Since we have assumed that
the cost of a request which does not invoke file transfer is negligible,
when the file is requested again, if the copy the user viewed last time
is still available on the local cache and up-to-date, the cost for this
request will be zero regardless whether the first request is satisfied by
a prefetched file or not. Therefore, we do not need to consider this case
in the cost function. If there is not an up to date copy of the file that
is available locally, the request is treated as a new request.

processor-sharing system with two Poisson inputs which is
shown in figure 1b, where the server in the model represents
both the network and the WWW server in the real system.
The server handles two kinds of requests: normal requests
are those user requests which can not be satisfied by the
prefetched files on the local disk, prefetch requests are those
sent by the prefetch program. All requests are of the same
priority and they join the same queue waiting for service. If
a user request can be satisfied by a prefetched file, no re-
quest will be sent to the server. We further assume that
requests which do not invoke a file transfer consume very
little resources and are negligible.

Here we assume that the access probability of each link
on every page is either exactly p (p > 0) or 0, where p is fixed
within a system but can vary for different systems. Files with
access probability 0 are never prefetched. This implies that
all the prefetched files will be requested by the user with
the same probability p. Now we begin to derive the prefetch
threshold step by step.

SERVER

a) The multiuser system.

Processor Sharing

Normal Requests A
SOTma Tequest A

(s)
N

—_—
Prefetching Requests A2
b) The prefetch system model.

Figure 1: Multiuser system and its model.

b) The cost function C.

As we defined earlier, the total cost of a user request is the
sum of the system resource cost of transmitting the file and
the delay cost of waiting for the file to arrive. Therefore, the
cost of a normal request is

(1)

where s is the file size, ¢ is transmission time. If the user
requests for a file that had previously been prefetched and
saved on the local cache, the cost associated with this request
is only

cin=ap-s+ap-t

(2)

Cy = QB -8

because the delay cost is zero.

Let XA be the arrival rate of user requests when no
prefetching is applied. We assume that prefetching does not
affect the user’s behavior regarding the likelihood of access-
ing links. Let the arrival rate of normal requests and prefetch

485

requests be A; and A, respectively when prefetching is em-
ployed. Therefore, the rate at which user requests are satis-
fied by the prefetched files is A — Ay, which is simply pAs by
definition. Thus Ay +p-Aos = X or

A]_—*-,\z = A—f—(l-—p)/\z (3)
where (A1 + Az)s must be less than & in order to keep the
system in a stable state.

In a Round-Robin processor-sharing system, the average
response time for a request requiring z time units of process-
ing is

x S

b(1 - p)
where p = Az is the system load, s is the average file size,
and b is the system capacity [2,3]. Plugging (4) into (1), we
obtain that, the cost of a normal request is

t

S

b— ()\1 +)\2)8 (5)

c1=ap-s§+4+ar-
where b > (A1+X3)s. Notice that in equation (5), the effect of
prefetching to other users in the system is reflected through
the Az in the formula. As more files are prefetched, the cost
of normal requests increases since prefetching increases the
system load and the delay of retrieving files. The average
cost of a prefetch request is given by (2).

Since users issue requests with rate A, and some of them
(pA2) are satisfied by prefetched files, the rest (A1) are sent
to the WWW server as normal requests; by equations (2),(4)
and (5), it follows that the average cost of an explicit user
request is

Ai-aatAz-co
A

FO+A=po)as +

C (6)
(A= prs)ar

b—(A+(1-p)ry)s

This equation for average cost C' is plotted in figure 2 as a
function of A4 for different values of p. Note that for expres-
sion (6), the valid range of Az is 0 < Ay < ;\— for0 < p<1l

¢) The optimum value of the prefetch rate ..

Assume p and X are known, we wish to find the values
of A1 and Ay which minimize the average cost of each user
request in the system. From equation (6), clearly, at p=1
C is minimized when Ay = A, i.e. if all the files have access
probability 1, all of thern should be prefetched. On the other
hand, if p = 0, C is minimized when Ay = A, therefore no
files should be prefetched. For 0 < p < 1, we consider the
following,.

From equation (6), we take the derivative of C' with re-
spect to Az, to obtain

dC s

dhy A

ar{As — pb)
(b= (A+ (1= p)Ag)s)?

[(1-plap + (7)

s=1, b=100, lambda =30, r=100

4 T T T T T
p=03 —
p=04 -
351 p=05 - 7

cost

25 et

o T -
N N‘ .\\\
2+ .\~~‘ S 7
TN TS
LR NN ~
N \ ~4 \\
i5r NN ~ 7
N
1 1 t 4 1 I 1 1
0 10 20 30 40 50 60 70
lambda_2

Figure 2: Average cost of a user request as a function of Ay
forp from 0.3 to 1. (s = 1,b =100, = 30,r = 2~ = 100)

Differentiating again, we get

d’C _ 25* ar(l—p)(Xs ~ pb)
= 3 BT (=) ®)

In a stable system, (A + (1 — p)A2)s = (A1 + A2)s must be
less than b. Therefore equation (8) shows that for pb > As

(0<p<, T?ETCZ is always less than zero. It follows that
function (6) is maximized at —a‘% = 0 on the half plane where

pb > As. Solving d%% = 0 for Ay, we obtain the critical value

%
;L 1 s (pb — As)ar
e T A (T R

Since function (6) is maximized at AL, where gTCQ =0, on the
half plane pb < As. This implies that the cost decreases as Ag
increases for Az > X}, Specifically, if A5 < 0 for a given p and
A, the more that files with access probability p are prefetched,
the lower the cost is for any Ay in the range [0, %] Therefore,
for a given p and A, if Ay, < 0, then prefetching all the files

with access probability p will minimize the cost.

Notice that although we have assumed the access prob-
ability of each file on a page is either p or 0, we did not limit
the exact number of links with access probability p on each
page. For example, if the access probabilities of all the links
on every page are all equal to p then Az can be as large as
A If all the files have access probabilities 0, then Ay = 0,

ecause we never prefetch the files with access probability 0.
Therefore, what we concluded in the last paragraph is that

For given p, A, and 2T, independent of the rate at

. . B . e .
which files with access probability p appear in the
system, if Ay < 0, then prefetching all the files with
access probability p minimizes the cost.

But exactly how many files are prefetched is determined by
the distribution of access probabilities, and we do not need
to know that to minimize the cost.

486

If A, > %, the cost Increases as As increases for Ay <

2 therefore no files should be prefetched.For 0 < X, < ;‘—,,
ﬁecause the distribution of access probabilities on a page
varies for different clients and with time, it is very hard to
determine if A2 would be greater than A} by prefetching all
the files with access probability p. Therefore the lower cost
can not be guaranteed at all times, and in this case we choose

not to prefetch any file.

d) The prefetch threshold H.
Let us now find the prefetch threshold H such that the
cost can be minimized by prefetching all the files with access

probabilities p, for p greater than H. From equation (9), we
can obtain that A}, < 0 if and only if

(1-p)gZ
p 2 l- o (10)
(1-p)?b+ 2%

where p = 553 We then set the prefetch threshold to be

po1- L Pas (11)
(1=-p3b+ 5%
Expression (10) shows that if the access probability p is
greater than or equal to the threshold H, then A5, < 0 ac-
cording to (9). Moreover, following our previous analysis this
implies that prefetching all the files with access probability p
will minimize the cost for p > H. The threshold H is plotted
in figure 3 as a function of system utilization p for several
different values of r = £T.

s=1 b=100

prefetch threshold B
=)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

utilization

Figure 3: Prefetch threshold H as a function of utilization

p for different values of ratio r = o

Figure 3 shows that, for fixed system load p and ca-
pacity b, the higher the ratio g:g_) the lower the prefetch
threshold. This is because higher % means that the time is
more expensive. For fixed b and %15}, as p increases, the over-
all trend of the prefetch threshold increases as well, which
means that fewer files should be prefetched. But the increase
1s not monotonic for small values of %ﬁ This is because in
some situations, when the load is low, prefetching does not
save much time. As the load increases, it takes longer to

transmit a file and prefetching can save more time, therefore
the threshold decreases. As the load continues to increase,
prefetching files will add relatively long delay to the normal
user requests, so the threshold needs to be increased again.
Another important thing indicated by expression (11) is, for
fixed p and ST, the prefetch threshold is higher for the sys-
tem whose original capacity b is higher.

e) An upper bound for the prefetch threshold for the
general system.

Up to now, we have assumed that the access probability
of each file on a page is either p or 0, where p is fixed within
a system but can vary for different systems. The following
theorem states that for an arbitrary distribution of access
probabilities, expression (11) gives an upper bound for the
prefetch threshold.

Theorem 1 Consider a system in which b, s, A, and %7.5
are known. Let f(q) be the rate at which files with access
probability q appear in the system, where fol q¢f(g)dg = A
and 0 < ¢ < 1. Ezpression (11)

He1- 0 ZPay
o
(1-p)b+ 3%
15 an upper bound for the optimum prefetch threshold for this
system.

We have proved this theorem based on our previous re-
sult. For the complete proof, please refer to our web page
http://millennium.cs.ucla.edu/~jiang/Research/.

In summary, our prefetch algorithm is as follows. For
each link 7 with access probability p; on a page, compute its
server’s access probability H using equation (11); if p; > H,
then prefetch the file otherwise do not prefetch this file.

4 Simulation results

In the last two sections, we studied the prediction algo-
rithm and the threshold algorithm. These two algorithms
are executed whenever the user starts viewing a new page,
and each file with access probability greater than or equal to
its server’s prefetch threshold is prefetched.

We conducted simulations to measure the efficiency of
our prediction algorithm. The simulations were driven by
the UCLA Computer Science department web server’s log
file taken during the period from April 11th to June 5th
of 1996. It consists of more than 300,000 accesses. The
simulations were concentrated on two representative pages:
the CS department home page and the TA home page. More
precisely speaking, the prediction algorithm is activated and
the program tries to prefetch files only when these two pages
are being viewed. A fixed prefetch threshold was used in
each simulation run and varied for different runs.

The CS department home page contains links to re-
search, students, faculty and other general information home
pages. These links are not updated very often. The TA
home page has links to all the class home pages which are

487

updated frequently to include new assignments or handouts
etc. Therefore, simulations on these two pages indicate how
well our prefetch scheme works on pages that need to be
visited frequently and infrequently.

We measured several different system parameters. If the
user requests a page and it is satisfied by a prefetched copy
of the file, then we call it a hit. The hit rate is defined as
the ratio of the number of hits over the total number of user
requests. For a fixed number of user requests, the higher
the hit rate, the more time is saved by doing prefetch. The
successful prediction rate is the probability of a prefetched
file being eventually used. A high successful prediction rate
indicates that less bandwidth is wasted due to prefetching
unused files. Figures 4-5 show the hit rate and successful
prediction rate obtained for the CS home page and the TA
home page with prefetch thresholds from 0.01—0.9. In addi-
tion to merging the access probabilities from the server and
the client as designed in the original scheme, we also tested
the cases of using probabilities from only one of them. Re-
sults from these three approaches are compared in figures 4-5
as well.

TA HOME PAGE

1 T T T T

@ 0.8 [RSN J
o J g\s\o
H H -3
g g
T o6 ! 4
EE o
3
S -
o -
3 0.4 F A -
i ?W
0
0
8 pmd
g Using client access probabilities 6—
o 5.2 /F Using server access probabilities —+-- .

f Using client and server access probabilities -E-

@

o L L 1 1 1
4

¢.2 0.4 0.6 0.8 1

a) prefetch threshold
CS HOME PAGE

Using client access probabilities -€—

successful prediction rate

0.2 7 Using server access probabilities —+-- .
? Using client and server access probabilities -EF-
=2}
o Li 1 1 1 1
] 0.2 0.4 0.6 0.8 1

b} prefetch threshold
Figure 4: Successful prediction rate vs prefetch threshold.
a) TA home page, b) CS home page.

As seen in figure 4, for both home pages, using only ac-
cess probabilities on the client site yields successful predic-

tion rates of around 70% even when the threshold is zero. As
the threshold increases, the successful prediction rate tends
to increase slowly. In figure 4a, the tails of top two curves
drop because there were very few files prefetched at those
threshold values. Each curve ends at the point where no file
is prefetched for larger prefetch threshold values. From figure
5 we see that, if the prediction algorithm runs only on the
client site, the hit rate is much lower, about 35% compared
to the successful prediction rate. On the other hand, by us-
ing only access probabilities from the server site or merging
those from server and client sites, we obtain much higher hit
rates. In addition, for small prefetch thresholds, these two
curves are very close because prefetches imvoked at the client
site with high access probabilities only contribute a small
portion of the total number of prefetches.

TA HOME PAGE
1 T T T T

Using client access probabilities $—
Using server access probabilities —--
Using client and server access prcbabilities -&r-

hit rate
,é

a) prefetch threshold

€S HOME PAGE
1T T T T T

Using client access probabilities -$—
Using server access probabilities —--
Using client and server access probabilities -EF-

1

hit rate

0 0.2 0.4 0.6 0.8 1

b} prefetch threshold

Figure 5: Hit rate vs prefetch threshold. o) TA home page,
b) CS home page.

The hit rate of the TA home page is lower than 40%
even with a threshold of zero, because some students access
a class home page using bookmarks or from pages other than
the TA home page. In this case no prefetch is done in our
simulation since we did not apply the prefetch algorithm to
pages other than the TA and CS home pages. The same
problem exists for the CS home page, but is less significant.

As a further test of the prediction algorithm we divided
all the requests into two subsets, those from inside UCLA and

488

those from outside UCLA. We then compared the results of
using different subsets of access history for prediction. Please
refer to our home page for detail and more simulation results.

5 The prefetch program

We have developed a prefetch program at the client site
on PC Windows. The program basically follows the scheme
we described previously except for the threshold algorithm.
Since currently we have no convenient way to obtain the
capacity of the link from a user to an arbitrary server, a
fixed threshold is used, but we allow at most three links be
prefetched for each new page downloaded. We are working
on the approximation algorithm to solve this problem.

The program is intergrated with Netscape through an
Application Programming Interface (API). No modification
is made to the Netscape source code. When being executed
on a machine for the first time, the program needs to register
with Netscape as an http protocol handler. After that, each
time Netscape is opened, it will be started automatically.
When the prefetch function is activated, the user may use
Netscape as usual. The Netscape window looks the same,
except that some icons will be added to each page being
viewed. (see below)

In our program, whenever a new page is downloaded,
we check the status of each distinct link on this page by
measuring the time needed to connect to the server and the
time between sending out a header request and receiving the
response from the server. We then provide this information
to the user by translating it into an icon placed next to the
corresponding link. This can potentially reduce traffic at
congested links or servers, because most users would choose
a fast link. Figure 6 shows the icons we used in our program.

Figure 6: The tcons used tn the prefeich program.

Basically, the mouth shape of an icon indicates whether
a link is fast, slow or in between, and the hat indicates if a
copy of the file is available on the local disk. For example,
the first icon in figure 6 means that the connection is good.
Requests to this server are expected to be finished very fast.
The icon below it shows not only that the link is fast, but also
that the file is available on the local disk. The last icon in the
second row means that the file is cached on the local disk, but

it is slow if you follow that link further through that server.
The icon on the bottom row indicates an error, for example
the server is not reachable or file not found, etc. After a file
is prefetched, the icon next to the corresponding link will be
switched to a face wearing a hat with the same mouth shape.
Figure 7 is an example screen which demonstrates how the
icons work.

This page shows how the prefetch program works. The program runs at the
background, the window you see here is the Netscape browser window. Icons
next to each link are added automatically by the prefetch program. They
indicate how fast the links are and if the files are available on the local disk.

o

g{@i Netscape what’s cool home page is not very fast, but fortunately there
is a copy of that page in the cache. The file is there either because user has
visited this page before, or because it was prefetched automatically by the
program. We cann’t tell the reason from the icon.

€8 department is fast.

Link to the homepage of UCLA

| Airline France ’s home page is slow probably because the server is in
France. We will not be able to download files very quickly from there.

r—%
115
Last link points ro L8] "hitp: //www.ucla.edusnofile himl” . There is not

such a file. So a stop sign is shown next to the link.

Figure 7: Prefetch program sample page.

Our prefetch program only handles the http protocol.
In addition, images embedded in the page will generally not
be prefetched except for image maps to save the bandwidth.
The procedure of prefetching files is stopped immediately
whenever a new request is issued by the user, except if the
requested file is the one being prefetched. This may result in
many files not being transmitted completely. One of the on-
going research efforts on http protocol [4] is to continue an
interrupted transmission. If that is added in the http stan-
dard, we would be able to make better use of these partial
documents.

6 Conclusion

Prefetching is a technique which takes advantage of the
idle time between user requests to download files so that de-
lay can be reduced when a user requests these files later. To
achieve high efficiency with prefetching, we have devised an
algorithm to predict as accurately as possible the probability
of a file being requested by the user in the near future. In ad-
dition, given the access probabilities of files and the system
conditions, we determine which files should be prefetched
to maximize the savings. We do this by deriving an up-
per bound for the prefetch threshold which is a function of
system load, capacity and cost of a time unit and a system
resource unit. Simulations show that in general using the
access probabilities from the client can ensure that a large
portion of prefetched files are used, while the access proba-

489

bilities from the server can help improve the number of user
requests satisfied by the prefetched files.

References

[1] A. Bestavros, ”Speculative Data Dissemination and Ser-
vice to Reduce Server Load, Network Traffic and Service
Time for Distributed Information Systems” , Proceed-
ings of ICDE’96: The 1996 International Conference on
Data Engineering, March 1996.

[2] L. Kleinrock, Queueing Systems Vol 1: Theory, John
Wiley & Sons, New York, NY, 1975.

[3] L. Kleinrock, Queueing Systems Vol 2: Computer Ap-
plications, John Wiley & Sons, New York, NY, 1975.

[4] A. Luotonen, J. Franks, ”Byte Range Retrieval Exten-
sion to HTTP”, Internet Draft, draft-ietf-http-v10-spec-
04.html, February 1996.

[6] M. Mroz, ”A Client Based Prefetching Implementation
for WWW?”, MS dissertation, Dep. Comp. Sci. Univ. of
Boston, 1995

[6] V.N. Padmanabhan, ”"Improving World Wide Web La-
tency”, Technical Report UCB/CSD-95-875, UC Berke-
ley, May 1995.

